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On upstream influence in supersonic flows
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The general problem of propagation of three-dimensional disturbances in viscous
supersonic flows is considered in the framework of characteristic analysis. Unlike
previous results for linear disturbances we deduce a condition determining nonlinear
characteristic surfaces which is exact and therefore allows both qualitative and quanti-
tative studies of the speed of propagation as a function of various physical phenomena.
These include negative and adverse pressure gradients, and effects of wall cooling
and suction–blowing, which are studied in this work as an illustration of the general
theory.

1. Introduction
Revival of interest in high-speed aerodynamics with the objective of developing

technology ultimately applicable to vehicles from hypersonic aircraft to reusable space
launchers (e.g. Hyper-X, NASA’s multi-year hypersonic flight research program),
necessitates consideration of remaining open questions. Among them is the well-
known problem of upstream propagation of disturbances in supersonic flows bounded
by walls. While from inviscid theory it follows that an upstream influence occurs only
in locally subsonic regions, Ferri (1939) experimentally found such an influence exerted
by the boundary layer. This finding does not fit into the Prandtl hierarchical concept,
in which the outer (external) flow is supersonic, and thus allows only downstream
propagating disturbances in view of hyperbolicity, and the inner (internal) boundary
layer flow is of parabolic type, and therefore also could not explain the upstream
influence. This discrepancy generated the now well-known theory of viscous–inviscid
interaction, which eventually explained boundary layer separation phenomena.

In his seminal work Lighthill (1953a) reviewed a large number of experimental and
theoretical efforts to isolate two mechanisms by which the boundary layer transfers
disturbances upstream. The first one, suggested by Oswatitsch & Wieghardt (1941),
amounts to a pressure gradient producing boundary layer thinning or thickening and
thus inevitably changing the boundary layer shape (curvature) slightly upstream. This
change, in turn, generates another pressure gradient, thus repeating the processes until
disturbance decays far enough upstream. The second mechanism, introduced in works
by Lees (1949) and Liepmann, Roshko & Dhawan (1949), hinges on the existence of a
sufficiently large compressive disturbance leading to separation of the boundary layer
and thus resulting in modification of the external flow. As a consequence, the pressure
rises ahead of the separation point and the boundary layer separates there too. While
these two scenarios allowed classification of various experimental observations, they
do not reveal a fundamental physical mechanism for their occurrence. However, from
plain physical reasoning one might expect that the no-slip boundary condition at the
wall inevitably introduces a subsonic sublayer inside the boundary layer, through the
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Figure 1. Previous approximate models: (a) Tsien et al. (1949), (b) Lighthill (1950),
(c) Lighthill (1953a).

characteristic elliptic properties of which (steady subsonic flow obeys elliptic beha-
viour) the upstream influence can be transmitted, as conjectured by Howarth (1948).

One of the objectives of our work, in § 3, is to introduce a rigorous derivation of
this physical mechanism through the characteristic analysis inspired by the earlier
works of Neiland (1974) and Lipatov (1996), which as indicated above originates in a
two-component system – a parabolic boundary layer and a hyperbolic external flow –
through their interaction. Such a behaviour is now informally called weak ellipticity,
and can be explained without going back to the complete Navier–Stokes description.
While the conjecture of Howarth (1948) was distinguished by Lighthill (1953a) as a
third independent mechanism of upstream influence, the subsonic sublayer determines
a boundary layer response to pressure gradients and therefore plays a major role in
the separation phenomena and in the origin of the first two mechanisms formulated
above. This highlights the fundamental importance of understanding the processes
of disturbance propagation. From the character of the two primary mechanisms of
upstream influence, discussed above, it is obvious that propagation of disturbances
of both small and large amplitudes is equally important. So far, only linear theories
based on the idea of Howarth (1948) have been put forward to describe these pro-
cesses. In particular, Tsien & Finston (1949) replaced the flow structure by two layers
of uniform flow – one with Mach number M1 > 1 for the main stream and the other
with M2 < 1 for the boundary layer with subsonic width δ – as shown in figure 1(a).
However, their inviscid theory does not determine the values of M2 and δ, upon which
the attenuation of upstream influence depends. Another inviscid theory by Lighthill
(1950) replaces the step-like structure on figure 1(a) by a continuous one, shown in
figure 1(b). However, the lack of viscosity does not allow non-zero pressure gradients
and therefore the distance of upstream influence turns out to be negligible, contra-
dicting reality. This forced Lighthill (1953b) to postulate a non-zero Mach number
at the wall as demonstrated in figure 1(c). The value of M2 at the wall is determined
from the solution in the inner viscous sublayer adjacent to the wall and described by
incompressible equations since M2 is assumed to be small.

As one can observe, all these works have an approximate nature which, even though
they explain the basic physical mechanism, are not capable of giving a precise descrip-
tion. The latter is crucial if one wants to study, as in § 4, the effect of the velocity profile
shape on the propagation of disturbances or its dependence on various methods used
in active boundary layer control, like temperature and suction–blowing at the wall.
Besides the direction and the distance of disturbance propagation, the important
characteristic of the process is the speed of propagation, since it defines the time
scales of the separation phenomena, for example, relative to those of the main flow.
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While Neiland (1970) demonstrated that perturbations propagate upstream over the
whole length of the body in a hypersonic flow, there are no studies of the speed of
propagation.

Lastly, as one can infer from the characteristic analysis, understanding zones of
dependence and influence is important for consistent numerical formulations. The
presence of upstream influence invalidates marching procedures commonly used in
calculations of the boundary layer solutions as motivated by the parabolic properties
of Prandtl’s equations. The results obtained should be of help in formulating more
advanced numerical techniques accounting for the viscous–inviscid interaction (cf.
Veldman 1981).

2. Problem formulation
For definiteness we consider the flow of a perfect viscous gas over semi-infinite

body with a sharp leading edge located at zero angle of attack, as shown in figure 2.
Here we adopt the conventional boundary layer coordinates non-dimensionalized by
a global streamwise length l and a typical boundary layer thickness δ as follows:
x = lx, y = δy, and z = lz. The corresponding velocity components are scaled with
respect to the free-stream x-component u∞ as (u, v, w) = u∞(u, vrv, w). Here the index
∞ stands for the free-stream quantity and the index r for the order of magnitude of
the non-dimensional quantity in the boundary layer, which may differ substantially
from unity in view of drastic changes in the hydro- and thermodynamic quantities
inside the boundary layer. For example, as follows from mass conservation, vr = δ/ l,
so that v ∼ O(1). Accordingly the time variable is defined as t = (l/u∞)t , and the
thermodynamic quantities are normalized in the same manner: density ρ = ρ∞ρrρ,
pressure p = p∞prp, temperature T = T∞TrT , total enthalpy H = (u2

∞/2)H , viscosities
µ = µ∞µrµ and λ= µ∞µrλ. The physical system is characterized by a free-stream
Reynolds number Re∞, the Reynolds number in the boundary layer Rer , the Mach
number M∞, and the Prandtl number Pr, defined as

Re∞ =
ρ∞u∞l

µ∞
, Rer = Re∞

ρr

µr

, M∞ =
u∞

a∞
, Pr =

µCp

κ
.

Here a∞ is a sound speed equal to (γRT∞)1/2 for perfect gas, p = ρT , with specific heat
ratio γ and gas constant R, Cp the specific heat at constant pressure, and κ the heat
conduction coefficient. The viscosity obeys a power-law dependence on temperature,
µ = T ν . In what follows, we consider the case Pr = 1 and disregard the effects of
dissociation without limiting the generality of the theory.
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Substitution of these representations into the unsteady Navier–Stokes equations for
compressible viscous gas and consideration of the non-degenerate limit Rer ∼ l2/δ2 � 1
corresponding to the boundary layer approximation with accuracy O(Re−1

r ) yields

Lρ = −ρ∇ · v, (2.1a)

ρLu = −∆2 ∂p

∂x
+

∂

∂y

[
µ

∂u

∂y

]
, (2.1b)

ρLw = −∆2 ∂p

∂z
+

∂

∂y

[
µ

∂w

∂y

]
, (2.1c)

ρLH = 2 ∆2 ∂p

∂t
+

∂

∂y

[
µ

∂H

∂y

]
, (2.1d)

where L = ∂t + u∂x + v∂y + w∂z is a convection operator, ∆2 = Tr/γM2
∞, and the

pressure is independent of the thin dimension y, i.e. p = p(t, x, z) to leading order
with accuracy O(Re−1

r ). We work sufficiently far from the leading edge that the shock
wave and the boundary layer are separated by an inviscid region, as shown in figure 2.
This remains valid not only for supersonic flows, but also for hypersonic ones, M∞ � 1,
if the hypersonic interaction parameter χ∞ = Mν+2

∞ Re−1/2
∞ = o(M2

∞), since as one can
easily demonstrate the ratio of mass fluxes through the compressed layer and boundary
layer is Ψcl/Ψδ ∼ M2

∞/χ∞ (cf. Hayes & Probstein 1959). System (2.1) is subject to the
usual boundary conditions,

y = 0: u = 0, v = vw, w = 0, H = Hw;

y = ∞: u = 1, w = we, H = He,

where vw and Hw stand for the mass and temperature control at the wall, and He →
1 +w2

e in the hypersonic case. The last boundary condition, accounting for the interac-
tion between the boundary layer and outer flow, is modelled here with the local
tangent-wedge formula (i.e. Newton’s formula; cf. Hayes & Probstein 1959), according
to which the pressure on the body elementary area depends unsteadily only on its
orientation in space relative to the incoming flow and is independent of the shape of
the rest of the body,

1√
1 + w2

e

(
∂δ∗

∂t
+

∂δ∗

∂x
+ we

∂δ∗

∂z

)
= f (p) =

ppr − 1

M∞

[
γ 2 +

γ (γ + 1)

2
(ppr − 1)

]−1/2

. (2.2)

This condition, readily obtainable from the unsteady relations at the shock wave for a
perfect gas, is applicable to supersonic as well as to hypersonic flows, including both
regimes of interaction – strong, when δ∗ ∼ x3/4, and weak, δ∗ ∼ x1/2, as in the classical
boundary layer (cf. Hayes & Probstein 1959).

To simplify the subsequent analysis we perform a standard transformation of system
(2.1) to Dorodnitsyn variables generalized to the unsteady case (cf. Stewartson 1965),

(t, x, y, z) →
(

τ = t, ξ = x, η =

∫ y

0

ρ dŷ, ζ = z

)
, (2.3)

so that system (2.1) assumes the form

0 =
∂u

∂ξ
+

∂ṽ

∂η
+

∂w

∂ζ
, (2.4a)

Lu = −∆2

ρ

∂p

∂ξ
+

∂

∂η

[
ρµ

∂u

∂η

]
, (2.4b)
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Lw = −∆2

ρ

∂p

∂ζ
+

∂

∂η

[
ρµ

∂w

∂η

]
, (2.4c)

LH = 2 ∆2 ∂p

∂τ
+

∂

∂η

[
ρµ

∂H

∂η

]
, (2.4d)

where ṽ = ηt + uηx + wηz + ρv and the convective operator L is the same as before,
except for the substitution v → ṽ. Also, for simplicity of notation, we introduce two
stream functions ψ and φ defined according to u =ψη, ṽ = −ψξ − φζ , w = φη.

Lastly, the boundary layer thickness appearing in the interaction condition (2.2)
can be expressed in generic form as an integral,

δ∗ =

∫ +∞

0

f (v, ρ, H ) dy =

∫ +∞

0

f (v, ρ, H )

ρ
dη, (2.5)

where the form of f (v, ρ, H ) in general depends on the definition of δ∗ (i.e. velocity,
displacement, momentum thicknesses; cf. Schlichting 1962). While in the supersonic
case this choice influences somewhat the final relation for the characteristics, in the
hypersonic case this variation disappears since the boundary layer outer edge is very
distinct in view of the substantial difference in densities inside and outside the boun-
dary layer, as visually seen in experiments. In the latter case, f (v, ρ, H ) = 1 +O(χ∞/

M2
∞) for strong interaction and f (v, ρ, H ) = 1 + O(M−2

∞ ) for weak interaction, so that
the final form is

δ∗ =
γ − 1

2γ∆2

I

p
, I ≡

∫ +∞

0

[H − u2 − w2] dη, (2.6)

where the definition of total enthalpy was used.

3. Theory: characteristic analysis
It is known that there are many ways to introduce the concept of characteristics

without changing its meaning. In our characteristic analysis we essentially follow
the way in which Petrovsky (1954) defined the characteristic surface in proving the
Cauchy–Kovalevskaya theorem: an initial value problem has no unique solution (i.e.
the Cauchy problem is ill-posed) if the initial data are posed on a characteristic
surface. This allows a straightforward determination of this surface Ω(x) by making
a transformation from original independent variables x to new ones Ω(x) in which
resolution for the highest derivative of the solution becomes impossible. While the
characteristics are the integral part of the problem (even if it is in a constant state),
they are the paths along which linear and nonlinear, continuous and discontinuous
disturbances propagate. Therefore, the characteristic analysis allows considerably
more general results to be obtained compared to the linear ones based on ad hoc
velocity profiles by Lighthill (1953b).

In view of the thin layer approximation in (2.1), we are interested in the propagation
of disturbances only in the (ξ, ζ )-plane, i.e. parallel to the body surface. In this respect
the unsteady characteristic surfaces associated with this plane are exact. However, as
the analysis indicates they are equivalent to subcharacteristics, a concept introduced
in the singular perturbation methods (cf. Cole 1968) as characteristics associated
with the lower derivatives in partial differential equations. While the role played by
subcharacteristics in these methods is secondary, the works by Wang (1971, 1975)
on three-dimensional incompressible boundary layers revealed their major role in
determining zones of influence and dependence, and the structure of solution.
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3.1. Hypersonic boundary layer

In the light of the above we associate the propagating quantity (initial data) with
the characteristic surface Ω , which in view of the thin layer approximation depends
only on time-like variables, that is Ω = Ω(τ, ξ, ζ ), so that the disturbances propagate
with the same speed across the boundary layer thin dimension y. Therefore, the
transformation assumes the form (τ, ξ, η, ζ ) → (Ω(τ, ξ, ζ ), η), which when applied
to (2.4), (2.2), (2.6) yields a system for δ∗

Ω, pΩ, ψΩ, φΩ, HΩ , which after elementary
elimination of δ∗

Ω becomes

f (p) =
∆̃e√

1 + w2
e

1

p2
[pIΩ − IpΩ ], (3.1a)

∆̃ψηΩ − Dψηη = −γ − 1

2ργ
ΩξpΩ + Cu, (3.1b)

∆̃φηΩ − Dφηη = −γ − 1

2ργ
ΩζpΩ + Cw, (3.1c)

∆̃HΩ − DHη = −γ − 1

ργ
ΩτpΩ + CH, (3.1d)

where D = ΩξψΩ + ΩζφΩ , ∆̃= Ωτ + ψηΩξ + φηΩζ , ∆̃e = ∆̃|η=+∞, and Cf = [ρµfη]η.
Recalling the definition of the integral I from (2.6), one can observe that on eliminating
ψΩ, φΩ, HΩ from IΩ =

∫ +∞
0

[HΩ − 2ψηψηΩ − 2φηφηΩ ] dη one should arrive at only one
equation for pressure. Multiplying equation (3.1b) by Ωξ and equation (3.1c) by Ωζ

and adding the results, one obtains

D = ∆̃

∫ η

0

ΩξCu + ΩζCw −
(
Ω2

ξ + Ω2
ζ

)
((γ − 1)/2ργ )pΩ

∆̃2
dη.

Using this expression one finds ψηΩ, φηΩ, HΩ from equations (3.1b–d), and substituting
the results into (3.1a) gives the final equation for the pressure on a characteristic
surface:

N
dp

dΩ
= γp

{√
1 + w2

e

∆̃e

pf (p) − f̃

}
. (3.2)

Since f̃ is not a function of pressure and its derivative(s), the characteristic equation
is defined by the vanishing of the factor N in the above equation, i.e.

N =
γ − 1

2

∫ +∞

0

(H − u2 − w2)2

[a − u cos(ω) − w sin(ω)]2
dη −

∫ +∞

0

(H − u2 − w2) dη = 0. (3.3)

Here we have introduced the speed of disturbances propagation a and the angle ω

between x-axis and direction of propagation, defined as

a = Ωτ

[
Ω2

ξ + Ω2
ζ

]−1/2
, a cos ω = − ΩτΩξ

Ω2
ξ + Ω2

ζ

, a sin ω = − ΩτΩζ

Ω2
ξ + Ω2

ζ

.

The characteristic condition (3.3) allows one to determine the speed of propagation
depending upon the angle in the (ξ, ζ )-plane for given profiles of velocity and total
enthalpy. This will be the subject of § 4.

Some physical insights into the meaning of (3.3) can be attained by writing this
condition in the steady case, a = 0, as applied to the cylindrical ejector supersonic pro-
pelling nozzle (refer to figure 3) with constant Mach numbers Mj and Ms in the main



Upstream influence in supersonic flows 173

Aj A
Main jet

supersonic

Subsonic jet

Initial plane

Figure 3. Ejector nozzle.

and secondary jets respectively. As a result, we recover the condition of Pearson,
Holliday & Smith (1958),

Aj

(
1 − M−2

j

)
+ As

(
1 − M−2

s

)
= 0, Aj + As = A = const,

illustrating the evolution of the jet after leaving the initial plane: thickening of the
supersonic area Aj reduces the subsonic one As . Thus one can anticipate that this
‘conservation’ property – balance of sub- and supersonic parts of the velocity profile
– will determine the speed of propagation in the unsteady case.

It is also notable that equation (3.3) has some similarities – an analogous singular
denominator (u − a)2 under the integral sign – with the long wave study by Teshukov
(1994) in a vortex barothropic fluid under the shallow water approximation. Despite
the lack of viscosity in the latter problem, it has some common features with ours,
namely the presence of vorticity, nonlinear convective operator, thin layer approxima-
tion and integro-differential character of the problem. The analogue of interaction in
the problem considered by Teshukov (1994) comes from the y-momentum equation,
py = −ρ, accounting for the barotropic behaviour.

3.2. Generalization to the supersonic boundary layer

The finite Mach number case can be treated essentially as in the previous subsection
with the only complication coming from the absence of a distinct boundary layer
outer edge as opposed to the hypersonic case. This makes the function f , defined
in (2.5), depend on (v, ρ, H ) as opposed to f � 1 in the hypersonic case. Here, as
an illustration, we consider the case of velocity thickness, so that f =1 − u for the
two-dimensional boundary layer. Following the procedure outlined in the previous
subsection yields an equation for pressure analogous to (3.2), so that the characteristic
equation is given by

N =
γ − 1

2

∫ +∞

0

(1 − u)(H − u2)2

(u − a)2
dη −

∫ +∞

0

(1 − u)(H − u2) dη

+
γ −1

2

∫ +∞

0

(H −u2)

{
1

(u−a)2

∫ η

0

(H −u2) dη̂−uη

∫ η

0

H −u2

(u−a)2
dη̂− H −u2

u−a

}
dη.

(3.4)

In the hypersonic limit the entire second line of this expression vanishes while the first
line naturally converges to (3.3) with ω = 0. Solving (3.4) is no more complicated than
solving (3.3) for the disturbance speed a for known velocity and enthalpy profiles.

3.3. Generalization to the flow in a corner

The same type of analysis can be applied not only to flows over smooth flat
surfaces but also to flows in corners, where strong upstream influence was observed
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experimentally (V. N. Ostras, private communication). As an example we consider the
viscous flow of a perfect gas in a corner as shown in figure 4; the free-stream velocity
is directed along the x-axis. The boundary layer formulation (2.1) is clearly not
applicable anymore, and for a self-consistent formulation one needs to take into
account the first two terms in the asymptotic expansion for the pressure, p = p0(t, x) +
εp1(t, x, y, z) + . . . , where ε =[∆Rer ]

−2 	 1. This produces a set of parabolized
Navier–Stokes equations (for Pr =1),

Lρ = −ρ div v, (3.5a)

ρLu = −∆2 ∂p0

∂x
+

∂

∂y

[
µ

∂u

∂y

]
+

∂

∂z

[
µ

∂u

∂z

]
, (3.5b)

ρLv = −∆2 ∂p1

∂z
+

∂

∂x

[
µ

∂u

∂y

]
+

∂

∂y

[
2µ

∂v

∂y
+ λ∇ · v

]
+

∂

∂z

[(
∂v

∂z
+

∂w

∂y

)]
, (3.5c)

ρLw = −∆2 ∂p1

∂z
+

∂

∂x

[
µ

∂u

∂z

]
+

∂

∂y

[
µ

(
∂v

∂z
+

∂w

∂y

)]
+

∂

∂z

[
2µ

∂w

∂z
+ λ∇ · v

]
, (3.5d)

ρLH = 2∆2 ∂p0

∂t
+

∂

∂y

[
µ

∂H

∂y

]
+

∂

∂z

[
µ

∂H

∂z

]
. (3.5e)

In this physical set-up we are interested in understanding the propagation of distur-
bances along the corner edge, which is best described by considering the problem in
a neighbourhood of the plane of symmetry, so that the interaction condition is given
by a simplified version of (2.2):

f (p) =
∂δ∗

∂t
+

∂δ∗

∂x
, δ∗ = δ0 +

z2

2(δ0 −
√

2δ∞(x))
+ . . . ,

where δ0 is a boundary layer thickness in the plane of symmetry and δ∞ is a thickness
at infinity, as illustrated in figure 4.

In this formulation the disturbance evolution is governed by the x-momentum
and energy equations: thus after transformation to Dorodnitsyn and characteristic
variables, (τ, ξ, η, ζ ) → (Ω(τ, ξ ), η, ζ ), one obtains a two-dimensional version of (3.3)
with ω = 0 and w ≡ 0, which allows one to determine the speed of propagation in a
neighbourhood of the symmetry plane.

4. Application: a hypersonic yawed wing
The use of the characteristic equation (3.3) for computing disturbance propagation

is especially straightforward in the case of small-amplitude disturbances. In this case,
the profiles of velocity and enthalpy correspond to the basic state (steady or unsteady).
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As an example of an application, cf. figure 5 and Schlichting (1962), we consider the
case of a steady hypersonic flow over a yawed wing of infinite span at zero lift (zero
angle of attack), which is suited to illustrational purposes. In this case the potential
flow depends on x only, so that system (2.4) is substantially simplified in view of the
lack of dependence on the z-coordinate. Taking into account this fact and applying
further transformation to the boundary layer equations in Dorodnitsyn variables (2.4),

ξ → ξ̃ =

∫ ξ

0

ρwµwuδ dξ, η → η̃ =
uδ

f (ξ )
η, and ψ = f (ξ )Ψ (η̃), φ = f (ξ )Φ(η̃), H = Hδg,

where f (ξ ) = (2ξ̃ )1/2 and Hδ = u2
δ , for the case of linear dependence of viscosity on

temperature, µ = T , and a power-law pressure distribution, p = ξn, we arrive at a
system of Falkner–Skan type:

Ψη̃η̃η̃ + Ψ Ψη̃η̃ + β
(
g − Ψ 2

η̃ − Φ2
η̃

)
= 0,

Φη̃η̃η̃ + Ψ Φη̃η̃ = 0,

gη̃η̃ + Ψgη̃ = 0,

 (4.1)

with the boundary conditions

η̃ = 0: Ψ = Ψw, Ψη̃ = Φη̃ = 0, g = gw,

η̃ = ∞: Ψη̃ = 1, Φη̃ = tan α, g = cos−2 α.

Here α is an angle between the vector of free-stream velocity and the x-axis, and

β = −γ − 1

γ

n

n + 1

is the classical Falkner–Skan constant.
The solution of (4.1) was constructed for two types of flow: one corresponding

to an induced pressure distribution with n= − 1
2
, and the other corresponding to an

adverse pressure gradient with n> 0 (the results in figure 6(b) are shown for n= 0.1).
System (4.1) was integrated by a standard finite-difference method with care paid to
non-uniqueness of the solution for n> 0 (equivalent to negative β , known since the
work of Stewartson 1954). In the case n> 0 we were interested in the branch of the
solution corresponding to reverse flow (negative friction at the wall).

4.1. Directional diagram

The self-similar solution obtained by integration of (4.1) refers to the flow on a yawed
wing of infinite span. This solution can be used in the characteristic equation (3.3)
to determine the vector (aξ , aζ ), which forms the directional diagram common in
acoustics.
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Figure 7. Influence of the wall temperature, gw , and mass flux, Ψw .
(a) Upstream speed a−. (b) Downstream speed a+.

This diagram, computed for angle α =30◦ and shown in figure 6(a), illustrates how
the disturbance would propagate with time after introduction at some point in the
boundary layer, e.g. by an incident shock wave. The influence of wall cooling, gw =0,
is in the reduction of the speed of propagation in all directions relative to the normal
temperature, gw = 1, and at gw = 0 the upstream influence disappears completely –
the phenomenon to be discussed in the next subsection.

4.2. Influence of active control

The upstream and downstream influences were studied under the effects of wall tem-
perature and mass flux through the wall. The range of corresponding parameters
considered here was gw ∈ [0, 1] – from perfectly cold to normal temperature wall –
and Ψw ∈[−1, 1], with negative values corresponding to suction, and positive ones to
blowing.

Figures 7(a) and 7(b) demonstrate the dependence of the upstream a− and down-
stream a+ speeds respectively on the temperature factor gw for two limiting values
of mass flux Ψw = ±1. One can observe that an increase in suction reduces a− due
to a reduction of the subsonic part of the velocity profile. Wall cooling also leads to
thinning of the subsonic part, including the elimination of upstream propagation at
a perfectly cold wall, thus confirming the conclusions of the triple-deck analysis by
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Brown, Cheng & Lee (1990), who showed that lowering the wall temperature reduces
the triple-deck dimension and hence the degree of upstream influence. Figure 6(b)
illustrates the influence of an adverse pressure gradient, p ∼ ξ 0.1, on the upstream
propagation: the presence of reversed flow in the wall vicinity provides an additional
convective mechanism to convey disturbances and significantly amplifies the speed of
propagation.

5. Conclusions
In this work we have put the description of upstream influence in supersonic

flow on a systematic and rigorous footing. Unlike the previous approximate linear
modelling by Lighthill (1953b), our analysis yields an exact relation from which one
can determine both linear and nonlinear disturbance characteristics. The characteristic
equation was derived for three-dimensional hypersonic boundary layers interacting
with inviscid flow, and was generalized to supersonic boundary layer flow and flow
in a corner, described by the parabolized Navier–Stokes equations. As an illustration
we considered three-dimensional flow over a yawed wing, and studied the disturbance
propagation characteristics as functions of the direction (relative to the free stream
velocity vector), pressure gradient (positive and negative), and active control variables
– temperature and mass flux at the wall.
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